Unbounded order convergence in dual spaces
نویسندگان
چکیده
منابع مشابه
Convergence of the weak dual greedy algorithm in Lp-spaces
We prove that the weak dual greedy algorithm converges in any subspace of a quotient of Lp when 1opoN: r 2003 Elsevier Inc. All rights reserved. A subset D of a (real) Banach space X is called a dictionary if (i) D is normalized i.e. if gAD implies jjgjj 1⁄4 1: (ii) D is symmetric i.e. D 1⁄4 D: (iii) D is fundamental i.e. 1⁄2D 1⁄4 X : Given xAX we are interested in algorithms which generate a s...
متن کاملConvergence of the dual greedy algorithm in Banach spaces
We show convergence of the weak dual greedy algorithm in wide class of Banach spaces, extending our previous result where it was shown to converge in subspaces of quotients of Lp (for 1 < p < ∞). In particular, we show it converges in the Schatten ideals Sp when 1 < p < ∞ and in any Banach lattice which is p-convex and q-concave with constants one, where 1 < p < q < ∞. We also discuss convergen...
متن کاملOn statistical type convergence in uniform spaces
The concept of ${mathscr{F}}_{st}$-fundamentality is introduced in uniform spaces, generated by some filter ${mathscr{F}}$. Its equivalence to the concept of ${mathscr{F}}$-convergence in uniform spaces is proved. This convergence generalizes many kinds of convergence, including the well-known statistical convergence.
متن کاملStatistical uniform convergence in $2$-normed spaces
The concept of statistical convergence in $2$-normed spaces for double sequence was introduced in [S. Sarabadan and S. Talebi, {it Statistical convergence of double sequences in $2$-normed spaces }, Int. J. Contemp. Math. Sci. 6 (2011) 373--380]. In the first, we introduce concept strongly statistical convergence in $2$-normed spaces and generalize some results. Moreover, we define the conce...
متن کاملCONVERGENCE APPROACH SPACES AND APPROACH SPACES AS LATTICE-VALUED CONVERGENCE SPACES
We show that the category of convergence approach spaces is a simultaneously reective and coreective subcategory of the category of latticevalued limit spaces. Further we study the preservation of diagonal conditions, which characterize approach spaces. It is shown that the category of preapproach spaces is a simultaneously reective and coreective subcategory of the category of lattice-valued p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2014
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2014.04.067